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Static and dynamic characteristics of layerwise growth in two-dimensional

quasiperiodic Ito–Ohtsuki tilings are studied. These tilings are the projections of

three-dimensional stepped surfaces. It is proved that these tilings have

hexagonal self-similar growth with bounded radius of neighborhood. A formula

is given for the averaged coordination number. Deviations of coordination

numbers from its average are quasiperiodic. Ito–Ohtsuki tiling can be

decomposed into one-dimensional sector layers. These sector layers are one-

dimensional quasiperiodic tilings with properties like Ito–Ohtsuki tilings.

1. Introduction

The ‘cut-and-project’ method is a well known approach for

construction of quasiperiodic tilings. Main examples are the de

Bruijn construction for Penrose tilings (de Bruijn, 1981) and

the concept of ‘model set’ (Meyer, 1972; Moody, 2000).

Recently, Ito & Ohtsuki (1994) proposed a new construction

of quasiperiodic tilings based on the periodic tiling of three-

dimensional space.

Ito–Ohtsuki tilings are a family of plane tilings. Every tiling

from this family consists of three types of parallelograms.

Destainville et al. (2000) and Vidal & Mosseri (2000) give

some other examples of parallelogram plane tilings. A well

known ‘wierigna roof’ tiling is also an example of tilings of

such a type.

In recent years, some dynamic characteristics of periodic

and non-periodic tilings have been studied. These investiga-

tions are based on the layerwise growth model (Rau et al.,

2002). Periodic (Zhuravlev, 2002) and 1-periodic (Shutov,

2003) structures have the polygonal growth form (a graph or

tiling is called 1-periodic if its lattice of translations is one-

dimensional). If we consider non-periodic structures, we can

obtain elliptic arcs in growth form (Zhuravlev et al., 2002).

Zhuravlev & Maleev (2007) studied layerwise growth of

quasiperiodic Rauzy tiling (Rauzy, 1982). This tiling also has

the polygonal growth form.

Another important dynamic characteristic of the tiling is its

coordination sequence (Grosse-Kunstleve et al., 1996). The

coordination sequence is strictly connected with the layerwise

growth model. It is possible to give exact formulas for coor-

dination numbers in a periodic case (Shutov, 2005). For

quasiperiodic tilings, only asymptotic formulas can be

obtained (Baake & Grimm, 2003). Zhuravlev & Maleev (2008)

studied more thoroughly the properties of the coordination

sequence for a Rauzy tiling. One of these characteristics is the

deviation of a coordination number from its average. Such

deviations are quasiperiodic. Quasiperiods are determined by

the continued fraction expansions of some algebraic Pisout

numbers.

The study of Rauzy tiling is based on its parameterization

from the paper of Zhuravlev & Maleev (2007). This param-

eterization is based on the branching dynamic system on a

one-dimensional torus.

The aim of this paper is to prove the analogs of described

results for Ito–Ohtsuki tilings. Firstly, we obtain a new par-

ameterization of these tilings. Further, we study layerwise

growth and coordination sequence of Ito–Ohtsuki tilings. We

use some ideas and methods from number theory and the

theory of dynamic systems, and computer modeling.

2. Stepped surfaces and quasiperiodic tilings

Ito & Ohtsuki (1994) proposed the following construction.

Consider the normal tiling T3 of three-dimensional space by

unit cubes. Vertices of all cubes form an integer lattice with the

basis e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ, e3 ¼ ð0; 0; 1Þ. Consider four

numbers a, b, c, h such that 0< a< b< c. Suppose that a, b

and c are linearly independent over the field of rational

numbers. For every cube from T3, we consider its vertex with

the following property: the vector from the vertex to the

center of this cube is (1
2,

1
2,

1
2). This vertex is called a labeled

point of the cube. By definition, coordinates of a cube are

coordinates of its labeled point. For example, the cube

�1e1 þ �2e2 þ �3e3 : any �i 2 ½0; 1Þ has coordinates ð0; 0; 0Þ.

Let P be a plane ax þ byþ czþ h ¼ 0. Let S be a set of cubes

from the half-space axþ byþ czþ h � 0. The boundary B of

the set S consists of the faces of unit cubes. The set B is called a

stepped surface.

It can be proved that the face with a labeled point ðp; q; rÞ

lies on the stepped surface iff 0< apþ bqþ crþ h �

aþ bþ c. Consider the plane P0: xþ yþ z ¼ 0. Let p be an

orthogonal projection from three-dimensional space to P0. Let

p1, p2, p3 be the images of the basis vectors e1, e2, e3 under this

projection. Then p1 þ p2 þ p3 ¼ 0 and two vectors p1, p2



generate a hexagonal lattice in the plane. Projection gives

one-to-one correspondence between vertices of the stepped

surface B and points of the hexagonal lattice. This corre-

spondence is given by the following formulas:

ðp; q; rÞ 2 B! ðp� rÞ�1 þ ðq� rÞ�2 2 �;

m�1 þ n�2 2 �! ðm; n; 0Þ

þ 1�
amþ bnþ h

aþ bþ c

� �� �
ð1; 1; 1Þ 2 B:

Here dxe is the minimal integer that is greater than or equal to

x. This implies that different points of the stepped surface B

are projected into different points of the plane P0. It means

that the projection �ðBÞ is the tiling Tilða; b; c; hÞ of the plane

P0.

From the linear independence of the numbers a, b, c over

the field of rational numbers follows the quasiperiodicity of

the tiling Tilða; b; c; hÞ.

Remark 1. If the numbers a, b, c are not linearly independent,

then the tiling Tilða; b; c; hÞ has a one- or two-dimensional

lattice of its translation symmetries.

Remark 2. Pytheas Fogg (2002) gives an alternative

construction of the tilings Tilða; b; c; hÞ based on an infinite

sequence of substitutions.

Remark 3. This construction was also given by Arnoux et al.

(2002).

In Fig. 1, we represent a patch of the quasiperiodic tiling

Tilða; b; c; hÞ with a ¼ 1; b ¼
ffiffiffi
2
p
; c ¼

ffiffiffi
3
p
; h ¼ 0:1. Further,

we will give all numeric data for this example.

3. Weak parameterization

The tiling Tilða; b; c; hÞ is quasiperiodic. Its tiles are rhombs of

three orientations with labeled points (see Fig. 2). Mathema-

tically, these rhombs are

E1 ¼ f�p2 þ �p3g; E2 ¼ f��p1 þ �p3g; E3 ¼ f��p1 � �p2g;

where �; � 2 ½0; 1Þ:

We say that the rhombs of types 1, 2 and 3 are red, green

and blue, respectively. Weak parameterization gives a cor-

respondence between coordinates of labeled points

ðm; nÞ ¼ mp1 þ np2 from the hexagonal lattice and types

of its rhombs. The set of parameters is a half-interval

I0 ¼ ð0; aþ bþ c�. Consider the map U:

Uðm; nÞ !

ðamþ bnþ hÞmod ðaþ bþ cÞ;
if ðamþ bnþ hÞmod ðaþ bþ cÞ 6¼ 0

aþ bþ c; otherwise:

8<
:

Using this map, we obtain the parameter from I0 for every

rhomb from Tilða; b; c; hÞ. Here x mod y ¼ x� y½x=y� and [x]

is the integer part of x.

Now we can describe the sets of parameters which corre-

spond to rhombs of every type. The set of parameters

I0 decomposes into three half-intervals I1 ¼ ð0; a�,

I2 ¼ ða; aþ b�, I3 ¼ ðaþ b; aþ bþ c�. The rhomb with

labeled point ðm; nÞ ¼ mp1 þ np2 is red if Uðm; nÞ 2 I1, green

if Uðm; nÞ 2 I2 and blue if Uðm; nÞ 2 I3.

The weak parameterization of Ito–Ohtsuki tiling can be

found in the paper of Arnoux et al. (2002). This param-

eterization produces a very convenient computer algorithm

for construction of Tilða; b; c; hÞ.

4. Strong parameterization

The rhombs from the tiling Tilða; b; c; hÞ are called neigh-

boring if they have a common edge. Now our aim is to

determine all neighboring rhombs for each rhomb. Recall that

we have correspondence between a rhomb and its parameters

from I0. So we must determine the parameters of neighboring

rhombs from the parameter of one rhomb. Weak param-

eterization cannot solve this problem.

For strong parameterization, we glue left- and right-hand

parts of the half-interval I0. Now we can consider I0 as a one-

dimensional torus. Consider the following operation:
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Figure 1
A patch of a two-dimensional quasiperiodic tiling Tilð1;

ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ.

Figure 2
Three types of rhombs from the tiling Tilða; b; c; hÞ and its labeled points.



x� y ¼

ðxþ yÞmod ðaþ bþ cÞ;
if ðxþ yÞmod ðaþ bþ cÞ 6¼ 0

aþ bþ c; otherwise:

8<
:

Let us define local numbers f!ig
4
i¼1 of the point x from the

parameter set I0 by the following property: fx� !ig is the set

of parameters of the rhombs neighboring the rhomb with the

parameter x. Strong parameterization gives the correspon-

dence between the points from I0 and their local numbers.

Strong parameterization depends on the sign of c� ðaþ bÞ. In

Table 1, we give half-intervals and corresponding local

numbers which determine the strong parameterization.

5. Layerwise growth

In the paper of Zhuravlev et al. (2002), the authors proposed a

layerwise growth model for tilings and packings as a simple

geometrical model for crystal growth. This model means the

following. Let Til be a tiling. Consider some finite set of tiles

from the Til. This set is called the seed. Tiles neighboring the

tiles from the seed form the first coordination encirclement.

Similarly, the second coordination encirclement is formed by

tiles neighboring tiles from the first encirclement with the

exception of tiles from the seed, and so on. Let eq(n) be the

nth coordination encirclement. The process of consecutive

addition of coordination encirclements we called the layerwise

growth process. If there exists the limit � ¼ limn!1eqðnÞ=n,

we say that the tiling Til has self-similar growth with the form

�. In this case, � does not depend on the seed. It should be

noted that the problem of correspondence of this model of

layerwise growth of the tilings with physical quasicrystal

growth is opened and demands additional research.

We prove that the tilings Tilða; b; c; hÞ have self-similar

growth. The growth form is a convex centrosymmetrical

hexagon polða; b; cÞ which does not depend on h. Coordinates

of its vertices in the hexagonal lattice � are

�
b

aþ b
;
�a

aþ b

� �
;� 1;

a

aþ c

� �
;�

b

bþ c
; 1

� �
:

The proof consists of two parts. The first part is a bounding

growth polygon from below. This part uses parameterization

of geodesic chains in the tiling and a method to approximate

chains. The details of this technique can be found in the papers

of Zhuravlev (2002) and Zhuravlev & Maleev (2007). The

second part is a bounding growth polygon from above. It uses

a connection between the growth of the tiling Tilða; b; c; hÞ

and the growth of three-dimensional periodic structures,

which will be described below.

In Fig. 3, one can see the first 20 coordination encirclements

for the tiling Tilð1;
ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ. The seed (black rhombs) is

three rhombs of various types nearest to the point of origin.

There exists an interesting connection between the growth

of the tiling Tilða; b; c; hÞ and the growth of three-dimensional

periodic structures. Once again, consider the normal tiling of

three-dimensional space on unit cubes. Consider the set of

faces of all cubes from this tiling. We say that two faces are

neighboring if they have a common edge. Similarly to the case

of tilings, we can introduce the coordination encirclements.

The growth form of this structure is the unit octahedron

generated by the vectors �e1;�e2;�e3. Consider the section

of this octahedron by the plane axþ byþ cz ¼ 0. Then the

polygon obtained by orthogonal projection of this section to

the plane xþ yþ z ¼ 0 is polða; b; cÞ.

The strong parameterization of the tiling Tilða; b; c; hÞ

produces an algorithm of layerwise growth for this tiling.

By computer modeling we obtain the following stability

property of growth form:

eqðnÞ � ðn � polða; b; cÞÞC:

This means that there exists an absolute constant C such that

the nth coordination encirclement is a subset of the C-neigh-

borhood of the polygon n � polða; b; cÞ. We also note that the

growth hexagon polða; b; cÞ continuously depends on the

parameters a, b, c.

Coordination number m(n) of the tiling Tilða; b; c; hÞ is a

cardinality of the set eqðnÞ or the number of rhombs from the

nth coordination encirclement (see Grosse-Kunstleve et al.,

1996). Exact topological density (td) of the tiling Tilða; b; c; hÞ
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Table 1
Strong parameterization of the tiling Tilða; b; c; hÞ.

c< aþ b c> aþ b

Half-interval Local numbers Half-interval Local numbers

ð0; a� �a; b;�c ð0; a� �a; b;�c
ða; b� �a; b; c ða; b� �a; b; c
ðb; aþ b� �a;�b; c ðb; aþ b� �a;�b; c
ðaþ b; aþ c� a;�b; c ðaþ b; 2aþ b� a;�b; c
ðaþ c; 2aþ b� a;�b;�c ð2aþ b; aþ c� �a;�b
ð2aþ b; aþ bþ c� �a;�b;�c ðaþ c; aþ bþ c� �a;�b;�c

Figure 3
The first 20 coordination encirclements of the seed of three rhombs for
the tiling Tilð1;

ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ.



is defined by the equality tdða; b; c; hÞ ¼ limn!1mðnÞ=n. We

prove that

tdða; b; c; hÞ ¼ 4 1þ
abc

ðaþ bÞðbþ cÞðcþ aÞ

� �
:

The proof follows from the formula

tdða; b; c; hÞ ¼ 2jpolða; b; cÞj;

where jpolða; b; cÞj is the area of growth polygon. The unit of

area is taken as an area of each rhombus. This formula can be

proved by standard methods of analytical number theory.

Technical details can be found in the paper of Zhuravlev

(2002).

From this, we also have an inequality 4< tdða; b; c; hÞ< 4:5
for any a, b, c. For coordination numbers m(n), we have an

asymptotic formula

mðnÞ ¼ tdða; b; c; hÞnþ rðnÞ; with
rðnÞ

n
! 0 as n!1:

The graph of the function r(n) for the tiling Tilð1;
ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ

is represented in Fig. 4(a). This graph was obtained by

computer modeling.

To show up some properties of the function r(n), we first

consider similar functions for growth sectors.

If we consider rays from the point of origin to vertices of the

growth polygon polða; b; cÞ, then we obtain the partition of the

plane into six growth sectors. Define a sectorial coordination

number mðiÞðnÞ as a number of rhombs in the intersection of

the nth coordination encirclement eqðnÞ and the ith growth

sector. Denote this intersection by eqðiÞðnÞ. Rhombs which

intersect with two neighboring sectors are considered to

belong to both sectors. Recall that the growth polygon

polða; b; cÞ is centrosymmetrical. Moreover, if the seed is

three rhombs of various types nearest to the point of origin,

then we can prove that coordination encirclements eqðiÞðnÞ are

centrosymmetrical too. So, sectorial coordination numbers are

equal in centrosymmetrical sectors. In the general case,

sectorial coordination numbers in centrosymmetrical sectors

differ by no more than a constant, depending only on the seed.

From this it follows that we can study only the first three

sectors.

If we denote by poliða; b; c; hÞ the part of the growth

polygon located in the ith growth sector, we can prove that

limn!1mðiÞðnÞ=n ¼ 2jpoliða; b; cÞj. We will denote this limit as

m(i). The proof is similar to the proof of the formula for exact

topological density. So we have the following formulas for

sectorial coordination numbers:

mð1;4ÞðnÞ ¼
aðaþ bþ cÞ

ðaþ bÞðaþ cÞ
nþ rð1;4ÞðnÞ;

mð2;5ÞðnÞ ¼
cðaþ bþ cÞ

ðcþ aÞðcþ bÞ
nþ rð2;5ÞðnÞ;

mð3;6ÞðnÞ ¼
bðaþ bþ cÞ

ðbþ cÞðbþ aÞ
nþ rð3;6ÞðnÞ:

Here limn!1rðiÞðnÞ=n ¼ 0. Hence, the function rðiÞðnÞ is the

remainder term.

Graphs of the functions rðiÞðnÞ (i = 1, 2, 3), obtained by

computer modeling, are represented in Figs. 4(b), (c), (d).

If we want to study the function rðiÞðnÞ, we need more

information about the sets eqðiÞðnÞ.
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Figure 4
Graphs of the deviation rðnÞ and sectorial deviations rðiÞðnÞ.



6. Sector layers

Consider the set eqðiÞðnÞ. Rhombs from eqðiÞðnÞ are naturally

ordered. There exist local numbers with the following prop-

erty: if x is a parameter of an arbitrary rhomb from eqðiÞðnÞ,

then x� !ðiÞ is a parameter of the next rhomb. Local numbers

are represented in Table 2.

So we have parameterizations of the sets eqðiÞðnÞ. Using the

map, we can continue these sets to infinity on one side. Using

local numbers, we obtain two-side continuation of the set

eqðiÞðnÞ. This continuation is a two-side infinite chain of tiles.

This chain is called a sector layer of the ith type. Param-

eterization of the set eqðiÞðnÞ continues to the parameterization

of a sector layer. In the general case, we can select any rhomb

from the tiling Tilða; b; c; hÞ with the parameter x and use

maps x! x� ð!ðiÞÞ, x! x� ð�!ðiÞÞ on the set of parameters.

We can prove that two sector layers of one type, constructed

for one n, coincide. Therefore, the tiling Tilða; b; c; hÞ can be

decomposed into disjoint sector layers. These sector layers are

quasiperiodic. We can regard these sector layers as one-

dimensional quasicrystals.

Select any parameter x and consider a patch of sector layer

of the ith type, containing the rhomb with parameter x.

Suppose that the length of this patch equals l. Denote by

nðiÞðx; lÞ the number of rhombs from this patch. We can prove

that liml!1nðiÞðx; lÞ=l ¼ mðiÞ=~llðiÞ, where ~llðiÞ is the length of the

ith edge of the growth polygon and mðiÞ ¼ limn!1mðiÞðnÞ=n.

Then we get the following formulas:

nð1;4Þðx; lÞ ¼
aþ bþ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3a2 þ b2 þ c2 þ 3abþ 3acþ bc
p l þ �ð1;4Þðx; lÞ;

nð2;5Þðx; lÞ ¼
aþ bþ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 þ 3c2 þ abþ 3acþ 3bc
p l þ �ð2;5Þðx; lÞ;

nð3;6Þðx; lÞ ¼
aþ bþ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 3b2 þ c2 þ 3abþ acþ 3bc
p l þ �ð3;6Þðx; lÞ;

where liml!1½�
ðiÞðx; lÞ�=l ¼ 0.

Consider the remainder terms �ðiÞðx; lÞ. Mathematically,

maps x! x� !ðiÞ are an integral transformation of circle

rotations x! xþ �ðiÞðmod 1Þ. The definition of integral

transformation can be found in the paper of Cornfeld et al.

(1982). Using computer modeling and mathematical methods

from number theory, we can obtain the following properties of

the deviations �ðiÞðx; lÞ.

1. Unbounded growth. �ðiÞðx; lÞ ! 1 as l!1.

2. Quasiperiodicity. There exists an infinite sequence of

quasiperiods P
ðiÞ
k such that j�ðiÞðx; l þ P

ðiÞ
k Þ � �

ðiÞðx; lÞj � 1 for

any l. So the functions �ðiÞðx; lÞ are close to periodic. However,

from the unbounded growth property it follows that the

functions �ðiÞðx; lÞ are non-periodic. Quasiperiods P
ðiÞ
k can be

computed by the formula P
ðiÞ
k ¼ KðiÞQkð�

ðiÞÞ. Here Qkð�
ðiÞÞ is

the denominator of the kth partial convergent to �ðiÞ. Numbers

Qkð�
ðiÞÞ are easily computed by using a continued fraction

expansion of �ðiÞ. Values of KðiÞ and �ðiÞ are represented in

Table 3. Constants can also be computed by the formula

KðiÞ ¼ ½~llðiÞ=mðiÞ�tðiÞ. Here tðiÞ is an average time of returning the

point under the integral transformation into the same interval.

3. Growth of amplitude. Let A
ðiÞ
k be the difference between

the maximal and minimal values of �ðiÞðx; lÞ if 1 � l � P
ðiÞ
k .

Then A
ðiÞ
k grows as a sum of partial quotients of the continued

fraction expansion of �ðiÞ. More precisely, we have inequalities

C
ðiÞ
1 kþ

Pk
j¼1

qjð�
ðiÞÞ

" #
� A

ðiÞ
k � C

ðiÞ
2 kþ

Pk
j¼1

qjð�
ðiÞÞ

" #
;

where qjð�
ðiÞÞ is the jth partial quotient of the continued

fraction expansion of �ðiÞ. Now C
ðiÞ
j are constants which do not

depend on l and n.

4. Form of the graph. If 1 � l � P
ðiÞ
k , then we can approxi-

mate the graph of the function �ðiÞðx; lÞ by some polyline f
ðiÞ
k ðlÞ.

This polyline consists of at most three segments. If the polyline

consists of only two segments, we will say that this polyline is

degenerated. The deviation of the graph from this polyline is

bounded by a previous amplitude: j�ðiÞðx; lÞ � f
ðiÞ
k ðlÞj �

C
ðiÞ
3 A
ðiÞ
k�1, if 1 � l � P

ðiÞ
k .

The proof of 1–4 uses the expansion of remainder terms

�ðiÞðx; lÞ in special sums of fractional parts
P½l�

i¼1 fi�
ðiÞ þ �ði;jÞg

({x} is a fractional part of x). For this sum, similar properties

were proved by Shutov (2006).

From the properties 2–4, we have two corollaries. Firstly, if

one of the partial quotients qjð�
ðiÞÞ is relatively big, then we

have a very long interval where the graph of the function

�ðiÞðx; lÞ seems to be a periodic polyline. Secondly, the graph of

the function �ðiÞðx; lÞ has fractal structure. In Fig. 5, we

represent graphs of the function �ð3Þð0; lÞ for the tiling

Tilð1;
ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ on various scales. In Table 4 are repre-

sented parameters of the continued fraction expansion of �ðiÞ

and quasiperiods P
ðiÞ
k .

7. Remainder terms in sectors

Now we apply the obtained results to sectorial remainder

terms rðiÞðnÞ. Since sets eqðiÞðnÞ are patches of sector layers, we
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Table 2
Parameterization of the sector layers: local numbers.

Sectors I, IV Sectors II, V Sectors III, VI

Half-interval !ð1Þ Half-interval !ð2Þ Half-interval !ð3Þ

ð0; a� b � c ð0; a� b ð0; a� �a
ða; aþ b� b ða; 2a� �a ða; aþ b� c � a
ðaþ b; aþ bþ c� �c ð2a; 2aþ c� b � a ðaþ b; aþ bþ c� c

ð2aþ c; aþ bþ c� b

Table 3
Coefficients KðiÞ and �ðiÞ from the formula for quasiperiods of sectorial
deviations �ðiÞðx; lÞ.

Sector KðiÞ �ðiÞ

I, IV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a2 þ b2 þ c2 þ 3abþ 3acþ bc
p

aþ c

aþ b

aþ c

II, V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ 3c2 þ abþ 3acþ 3bc
p

bþ c

b� a

bþ c

III, VI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 3b2 þ c2 þ 3abþ acþ 3bc
p

bþ c

c� a

bþ c



can write the following formula for sector coordination

numbers: mðiÞðnÞ ¼ nðiÞðxn; ~ll
ðiÞðnÞÞ. Here ~llðiÞðnÞ is the length of a

set eqðiÞðnÞ and x is a parameter of its initial point. Self-similar

growth of the tiling Tilða; b; c; hÞ implies that

~llðiÞðnÞ ¼ n~llðiÞ þ ~rrðiÞðnÞ; ð1Þ

where ~llðiÞ is the length of the ith edge of the growth polygon

and j~rrðiÞn j � C
ðiÞ
4 . Hence, we have the following relation

between the sectorial remainder term rðiÞðnÞ and the layer

remainder term �ðiÞðx; lÞ:

rðiÞðnÞ ¼ �ðiÞðxn; ~ll
ðiÞ
ðnÞÞ þ ~��ðiÞðnÞ; ð2Þ

with j ~��ðiÞðnÞj � C
ðiÞ
5 .

It can be proved that the initial points x are determined by

the equality xnþ1 ¼ xn � ~!!ðiÞ. Local numbers ~!!ðiÞ are linearly

independent over the field of rational numbers. Hence, points

xn are uniformly distributed on the set of parameters.

Consider the function �ðiÞðx; nÞ ¼ �ðiÞðxn; ~ll
ðiÞðnÞÞ. It can be

proved that this function has properties 1–4 as well as the

function �ðiÞðx; lÞ with the renormalization of quasiperiods
~PPðiÞk ¼ P

ðiÞ
k =~ll
ðiÞ. Functions �1ðnÞ ¼ supx ~��ðiÞðx; nÞ and

�2ðnÞ ¼ infx ~��ðiÞðx; nÞ also have properties 1–4. However, for

these functions the approximating polyline is degenerated.

Furthermore, �1ðnÞ and �2ðnÞ give us an envelope of the graph

rðiÞðnÞ. Now we can conclude that the points of the graph rðiÞðnÞ

belong to some parallelograms as 1 � n � ~PPðiÞk . Further, we

must repeat this parallelogram with quasiperiod ~PPðiÞk to the

next quasiperiod. Quasiperiod ~PPðiÞk is stable if the partial

quotient q
ðiÞ
k of continued fraction expansion of �ðiÞ is

substantially greater then the neighboring partial quotients.

For the tiling Tilð1;
ffiffiffi
2
p
;
ffiffiffi
3
p
; 0:1Þ, these partial quotients (those

underlined in Table 4) determine the stable quasiperiods of an

envelope of rðiÞðnÞ: ~PPð1Þ7 ¼ 45 944, ~PPð2Þ6 ¼ 26 526, ~PPð3Þ6 ¼ 32 832

(see Figs. 4b, c, d).

Now we consider the question of the distribution of the

points of the graph rðiÞðnÞ in the described parallelogram. In

the first approximation, xn is a random point from the set of

parameters. The relevance of this assumption is motivated by

the uniform distribution of the points xn. In this case, we can

consider the graphs of the functions �ðiÞðx; nÞ for all x. Then we
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Figure 5
Graphs of the deviation �ð3Þð0; lÞ on various scales.

Table 4
Partial quotients q

ðiÞ
k and denominators of partial convergents Q

ðiÞ
k of continued fraction expansion of �ðiÞ and quasiperiods P

ðiÞ
k of the function �ðiÞðx; lÞ.

k
Sector I Sector II Sector III

q
ð1Þ
k Q

ð1Þ
k P

ð1Þ
k q

ð2Þ
k Q

ð2Þ
k P

ð2Þ
k q

ð3Þ
k Q

ð3Þ
k P

ð3Þ
k

1 1 1 1 7 7 11 4 4 6
2 7 8 13 1 8 13 3 13 20
3 1 9 15 1 15 24 2 30 46
4 1 17 28 2 38 61 1 43 66
5 2 43 70 9 357 578 4 202 310
6 9 404 659 47 16817 27233 95 19233 29522
7 47 19031 31065 1 17174 27811 1 19435 29832
8 1 19435 31724 8 154209 249722 3 77538 119018
9 8 174511 284861 14 2176100 3523921 1 96973 148850



can compute the probability measure which describes the

distribution of the points on the graph rðiÞðnÞ. This measure can

be decomposed into two components. The first component is

uniformly distributed on parallelograms. The second compo-

nent has a support in the strip near the boundary of the

parallelogram. The width of this strip is equal to A
ðiÞ
k�1. This

explains the concentration of the points of the graph rðiÞðnÞ

near the parallelogram’s boundary and the uniform distribu-

tion of such points in the parallelogram (see Figs. 4b, c, d).

8. Conclusions

We have discovered a hexagonal growth form with bounded

radius of neighborhood for quasiperiodic Ito–Ohtsuki tilings:

eqðnÞ � ðn � polða; b; cÞÞC. This implies a very stable nature of

the growth process. For sectorial coordination numbers, we

find asymptotic formulas mðiÞðnÞ ¼ kðiÞnþ rðiÞðnÞ with

limn!1rðiÞðnÞ=n ¼ 0. A graph of the function rðiÞðnÞ has some

interesting properties: quasiperiodicity, fractal structure of an

envelope, existence of parallelograms, consideration of the

points near an envelope and so on. We also discover the

existence of one-dimensional sector layers in Ito–Ohtsuki

tilings. Properties of these sector layers are similar to the

whole tiling. So these sector layers can be considered as one-

dimensional quasicrystals.

Note that most of these properties were discovered earlier

in the case of the quasiperiodic Rauzy tiling. Ito–Ohtsuki

tilings are an infinite family of tilings for which construction is

very different from the construction of the Rauzy tiling. So we

have several open questions. Are these properties strictly

connected with the quasiperiodicity of the tilings? What

properties of the tiling, except quasiperiodicity, give us these

effects? In particular, are these results true for well known

Penrose tilings?

This work was partially supported by RFBR (grants No.

04-02-16835, No. 05-01-00435).
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